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Abstract

A direct relation between the enumeration of ordinary maps and that of fully
simple maps first appeared in the work of the first and last authors. The relation is
via monotone Hurwitz numbers and was originally proved using Weingarten calculus
for matrix integrals. The goal of this paper is to present two independent proofs
that are purely combinatorial and generalise in various directions, such as to the
setting of stuffed maps and hypermaps. The main motivation to understand the
relation between ordinary and fully simple maps is the fact that it could shed light
on fundamental, yet still not well-understood, problems in free probability and
topological recursion.

Mathematics Subject Classifications: 05A15, 05A19, 20C30

1 Introduction

In this paper, we aim to prove a relation between the enumeration of ordinary maps and
the enumeration of fully simple maps that first appeared in the work of the first and last
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the electronic journal of combinatorics 26(3) (2019), #P3.43 1



authors [2]. We begin by defining a map, our primary object of study, along with some
related notions. In our context, a graph may have loops or multiple edges and we consider
it with the topology of a 1-dimensional CW complex.

Definition 1. A map M is a finite graph without isolated vertices embedded into an
oriented compact surface. We require the complement of the graph to be a disjoint union
of topological disks, which we call faces.

Define an oriented edge to be an edge along with a choice of one of its two orientations.
We say that an oriented edge is adjacent to a face if the face lies on its left and incident
to a vertex if it points to the vertex. Maps are endowed with the extra structure of an
ordered tuple of distinct oriented edges, such that no two are adjacent to the same face.
We refer to these oriented edges as roots, to the faces adjacent to them as boundary faces,
and to all remaining faces as internal faces. The number of oriented edges adjacent to a
face is called the degree of the face. We denote by ∂M the disjoint union of boundary
faces and by ∂1M, . . . , ∂nM the boundary faces ordered as their roots are.

Two maps are equivalent if there exists an orientation-preserving homeomorphism
between their underlying surfaces such that the vertices, oriented edges and faces of the
first map are carried bijectively to the vertices, oriented edges and faces of the second,
preserving all adjacencies and the tuple of roots.

2 1

Figure 1: An example of an ordinary map with two boundary faces of degrees 2 and 11,
and two internal faces of degrees 4 and 5.

In the final section of the paper, we consider the more general notion of a stuffed map,
which is obtained by relaxing the condition that the complement of the graph is a disjoint
union of topological disks.

In general, one says that a map is connected if the underlying topological surface
is connected. However, note that our definition of a map does not impose any such
condition and indeed, all enumerations considered in this paper include maps that may
be disconnected.

The definition of a map allows for different boundary faces to be adjacent along vertices
and edges, as well as for a boundary face to be adjacent to itself along vertices and
edges. Informally, we call a map fully simple if such behaviour does not arise — a precise
definition follows.

Definition 2. An oriented edge in a map is a boundary edge if it is adjacent to a boundary
face. A map is fully simple if each vertex is incident to at most one boundary edge.
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Figure 2: An example of a fully simple map with three boundary faces of degrees 3, 2 and
4, and an internal face of degree 15.

In previous work, the term simple has been used to refer to maps in which boundary
faces are not allowed to be adjacent to themselves along vertices and edges, whereas
different boundary faces may be adjacent along vertices and edges [2]. Throughout, we
use the term ordinary to refer to the class of all maps, so as to emphasise the distinction
from the class of fully simple maps. We will be interested primarily in the following
enumerations of (equivalence classes of) ordinary and fully simple maps.

Definition 3. For positive integers µ1, µ2, . . . , µn, let

Map(µ1, µ2, . . . , µn) =
∑
M map

|π0(∂M)|=n
deg(∂iM)=µi

w(M)

be the weighted enumeration of maps M with n boundary faces, such that the degree of
boundary face i is µi for i = 1, 2, . . . , n. The weight of a map is given by

w(M) =
~−χ(M)

|AutM |
t
f1(M)
1 t

f2(M)
2 t

f3(M)
3 · · · .

Here, χ(M) is the Euler characteristic of the underlying surface with the interiors of the
boundary faces removed, fk(M) is the number of internal faces of degree k, and |AutM |
is the number of automorphisms. The analogous weighted enumeration restricted to the
set of fully simple maps is denoted

FSMap(µ1, µ2, . . . , µn) =
∑

M fully simple map
|π0(∂M)|=n

deg(∂iM)=µi

w(M).

An automorphism of a map is a permutation of the oriented edges arising from an
orientation-preserving homeomorphism from the underlying surface to itself that preserves
the tuple of roots. Note that if each connected component of M contains at least one
boundary face, then |AutM | = 1.

Although there are infinitely many maps with prescribed boundary face degrees,
Map(µ1, µ2, . . . , µn) and FSMap(µ1, µ2, . . . , µn) are well-defined elements of the power

the electronic journal of combinatorics 26(3) (2019), #P3.43 3



series ring Z[[~, ~−1; t1, t2, t3, . . .]]. For brevity, our notation makes implicit the depen-
dence on the parameters ~ and t1, t2, t3, . . .. From these formal power series, one can
extract the number of maps with prescribed boundary face degrees, internal face degrees,
and Euler characteristic.

The main result of this paper relates the enumerations of ordinary and fully simple
maps via monotone Hurwitz numbers, which we presently describe. Call a sequence
τ1, τ2, . . . , τk of transpositions in the symmetric group Sd strictly monotone (respectively,
weakly monotone) if τi = (ai bi) with ai < bi and the sequence b1, b2, . . . , bk is strictly
increasing (respectively, weakly increasing).

Definition 4. Let λ and µ be partitions of a positive integer d and let k be a non-negative
integer. The strictly monotone Hurwitz number H<

k (λ;µ) is 1
d!

times the number of tuples
(ρλ, τ1, τ2, . . . , τk, ρµ) of permutations in the symmetric group Sd such that

• ρλ has cycle type λ and ρµ has cycle type µ;

• τ1, τ2, . . . , τk is a strictly monotone sequence of transpositions; and

• ρλτ1τ2 · · · τkρµ = id.

The weakly monotone Hurwitz number H6k (λ;µ) is defined analogously, where τ1, τ2, . . . , τk
is a weakly monotone sequence of transpositions.

We package these monotone Hurwitz numbers into the generating series

H<(λ;µ) =
∑
k>0

H<
k (λ;µ) ~k and H6(λ;µ) =

∑
k>0

H6k (λ;µ) ~k.

Note that H<(λ;µ) is a polynomial in ~, while H6(λ;µ) is in general a formal power
series in ~. Again, the dependence on ~ is implicit in our notation.

For d a non-negative integer, we write λ ` d to express that λ is a partition of d. We
denote the number of parts of λ by `(λ) and the sum of its elements by |λ|. Furthermore,
we will use the following notation, where mj(λ) is the number of occurrences of the positive
integer j in the partition λ.

z(λ) =

`(λ)∏
i=1

λi ·
∏
j>1

mj(λ)!

The main aim of this paper is to provide two combinatorial proofs of the following
result.

Theorem 5. For any partition λ = (λ1, λ2, . . . , λ`) of a positive integer d,

Map(λ) = z(λ)
∑
µ`d

H<(λ;µ) FSMap(µ).
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This result was originally proved using the following techniques from the theory of
matrix models [2]. Let H(N) denote the space of N × N Hermitian matrices and let
dν be a formal measure on it. For a polynomial function f on H(N), we introduce the
notation

〈f(A)〉 =

∫
H(N)

f(A) dν(A).

For µ1 + · · · + µn = d 6 N , there exists a formal measure dν on H(N) that is invariant
under conjugation by elements of the unitary group U(N), such that

Map(µ1, . . . , µn) =
〈 n∏
i=1

TrAµi
〉

and

FSMap(µ1, . . . , µn) = Nd
〈 n∏
i=1

Aa[i,1],a[i,2] · · ·Aa[i,µi],a[i,1]

〉
,

under the identification ~ = N−1. Here,
(
a[i, 1], a[i, 2], . . . , a[i, µi]

)
are arbitrary but fixed

disjoint cycles in Sd. The U(N)-invariance of the measure implies that

FSMap(µ1, . . . , µn) = Nd

〈∫
U(N)

n∏
i=1

(UAU †)a[i,1],a[i,2] · · · (UAU †)a[i,µi],a[i,1] dU

〉
,

where dU denotes the Haar measure on U(N). Weingarten calculus allows one to evaluate
the moments of a Haar-distributed random unitary matrix and thus, express the right side
of this equation as a linear combination of Map(λ) over partitions λ [3]. The upshot of
this calculation is the following relation, which we later show is equivalent to Theorem 5.

Corollary 6. For any partition µ = (µ1, µ2, . . . , µn) of a positive integer d,

FSMap(µ) = z(µ)
∑
λ`d

H6(µ;λ)
∣∣
~→−~ Map(λ).

In this paper, we provide two combinatorial proofs for Theorem 5. The first one
is more direct: we present a simplification algorithm that starts with an ordinary map
and produces a fully simple map and a strictly monotone sequence of transpositions.
The second one is more geometric: it starts with an ordinary map and produces a fully
simple map and a dessin d’enfant, which encodes the pattern of non-simple gluing of the
boundary faces. The result then follows from the fact that dessins d’enfant are enumerated
by strictly monotone Hurwitz numbers.

Theorem 5 was generalised to stuffed maps in the previous work of the first and
last authors, following the matrix model approach [2]. The combinatorial approaches
presented herein carry over to the setting of stuffed maps, but also generalise to the context
of hypermaps, which is perhaps not immediately amenable to the matrix model approach.
The essential idea behind these generalisations is the fact that our combinatorial proofs
are not sensitive to the behaviour of the internal faces. Since the local structure of the
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boundary faces in maps, stuffed maps and hypermaps agree, one has the notion of fully
simple and analogues of Theorem 5 for each case. A discussion of these results will be
presented in the final section of the paper.

It is worth remarking here on the genesis of Theorem 5 and a possible application.
The notion of fully simple maps was introduced in the work of the first and last au-
thors [2]. They show that, analogously to the identification of certain moments with the
enumeration of ordinary maps, the free cumulants that arise in free probability theory
can be identified with the enumeration of fully simple planar maps. This then provides an
elementary tool to work with higher order free cumulants, whose original definition uses
intricate objects called partitioned permutations [4]. Moreover, they propose a combi-
natorial interpretation of the symplectic invariance property of the topological recursion,
which is considered important yet is still not well understood [5, 6, 7]. It would be both
natural and useful to have a purely combinatorial proof that the enumeration of fully sim-
ple maps is governed by the topological recursion, which appears as a conjecture in [2].
Since the enumeration of ordinary maps is the prototypical example of a problem gov-
erned by the topological recursion, Theorem 5 may provide a mechanism to realise such
a proof.

The structure of the paper is as follows.

• In Section 2, we introduce the definitions and conventions for the main players in
this paper: namely, ordinary and fully simple maps, monotone Hurwitz numbers,
and dessins d’enfant. The permutation model for maps is presented, along with
a characterisation of fully simple maps within this framework. We then describe
monotone Hurwitz numbers from a representation-theoretic viewpoint and use this
to prove the equivalence of Theorem 5 and Theorem 6. The final part of this section
includes a proof that dessins d’enfant are enumerated by strictly monotone Hurwitz
numbers.

• In Section 3, we present the first proof of Theorem 5. The main idea is to start with
an ordinary map and to apply a simplification algorithm that produces a fully simple
map and a sequence of transpositions. We then show that the resulting sequence
is strictly monotone. Careful accounting of the combinatorial factors and weights
involved then allows us to deduce the main theorem of the paper.

• In Section 4, we present the second proof of Theorem 5. The main idea is to
interpret strictly monotone Hurwitz numbers as an enumeration of dessins d’enfant.
The form of the theorem suggests to construct a bijection that takes an ordinary
map to a pair comprising a fully simple map and a dessin d’enfant. We present such
a construction, as well as its inverse, which allows us to deduce the main theorem
of the paper.

• In Section 5, we consider natural generalisations of the notion of fully simple maps
and of Theorem 5 to stuffed maps and hypermaps.
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2 Preliminaries

In this section we elaborate on our main objects of study. We present the permutation
model for maps, give different characterisations for monotone Hurwitz numbers, introduce
dessins d’enfant and relate them to strictly monotone Hurwitz numbers.

2.1 Maps

Rather than the topological description of maps provided in Theorem 1, we predominantly
work with the permutation model for maps. The model is described in the book of Lando
and Zvonkin [9], although we present it here in notation that is particularly well-suited
for our purposes.

One can encode an unrooted map via a triple (σ0, σ1, σ2) of permutations acting on
the set E of oriented edges, in which

• σ0 rotates each oriented edge anticlockwise around the vertex it is incident to;

• σ1 is the fixed point free involution that swaps oriented edges with the same under-
lying edge; and

• σ2 rotates each oriented edge anticlockwise around the face to its left.

e1

e2

f1

f2

v2 v1 v

e

σ2(e)

σ1(e)

σ0(e)

Figure 3: The left diagram depicts the local structure of an edge in a map. The oriented
edges e1 and e2 are indicated by the arrows. With our conventions, ei is adjacent to face
fi and incident to vertex vi for i = 1, 2. The right diagram depicts the local structure of
a vertex in a map, including the action of the permutations σ0, σ1, σ2 on an oriented edge
e.

It follows that σ0σ1σ2 = id, where we adopt the convention of multiplying permutations
from right to left. Thus, one obtains the following result.

Lemma 7. A map can be encoded by a triple (σ0, σ1, σ2) of permutations in S(E) and a
tuple R ∈ En such that
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• σ1 is a fixed point free involution;

• σ0σ1σ2 = id; and

• no two elements of R lie in the same cycle of σ2.

The data (σ0, σ1, σ2;R) and (σ̃0, σ̃1, σ̃2; R̃) define equivalent maps if and only if there exists

a bijection φ : E→ Ẽ that sends R to R̃ and satisfies σ̃i = φσiφ
−1 for i ∈ {0, 1, 2}.

This permutation model admits the following characterisation of fully simple maps.
Suppose that a map is given by the data (σ0, σ1, σ2;R). Define the set B ⊆ E to be the
union of the σ2-orbits of the elements of R and observe that this naturally corresponds to
the set of boundary edges. Then the map is fully simple if and only if the elements of B
lie in different σ0-orbits.

Let us describe the characterisation of fully simple maps in a slightly different way,
using a notation that will subsequently be useful. Denote by σ∂0 ∈ S(B) the permutation
obtained by expressing σ0 ∈ S(E) as a union of disjoint cycles and deleting those elements
that do not lie in B. If e ∈ B is an oriented edge incident to the vertex v, then σ∂0 (e) is
the next oriented edge in B incident to v that is encountered when turning anticlockwise
around v. Then a map is fully simple if and only if the permutation σ∂0 is the identity
permutation.

2.2 Monotone Hurwitz numbers

Theorem 4 describes strictly and weakly monotone Hurwitz numbers as the enumeration
of certain factorisations in the symmetric group. Such problems are often amenable to
calculation via the representation theory of the symmetric group. For a positive integer
d, consider the centre ZQ[Sd] of the symmetric group algebra. As a vector space, it has
a basis formed by the conjugacy classes Cλ, defined to be the sum of the permutations
whose cycle type is given by the partition λ of d.

The representation theory of the symmetric group may be understood through the
Jucys–Murphy elements Jm =

∑m−1
`=1 (` m) ∈ Q[Sd] for m = 2, 3, . . . , d [8, 10]. The Jucys–

Murphy elements commute and it follows that any symmetric polynomial of J2, J3, . . . , Jd
is an element of ZQ[Sd].

The following equations demonstrate that the monotone Hurwitz numbers can be
expressed in terms of the centre of the symmetric group algebra as well as in terms of
characters of the symmetric group.

H<(λ;µ) =
∑
k>0

H<
k (λ;µ) ~k =

1

d!
[id]

(
CλCµ

d∏
m=2

(1 + ~Jm)

)
=
∑
ρ`d

χρ(λ)χρ(µ)

z(λ)z(µ)

∏
�∈ρ

(1 + c(�)~) (1)
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H6(λ;µ) =
∑
k>0

H6k (λ;µ) ~k =
1

d!
[id]

(
CλCµ

d∏
m=2

1

1− ~Jm

)
=
∑
ρ`d

χρ(λ)χρ(µ)

z(λ)z(µ)

∏
�∈ρ

1

1− c(�)~
(2)

The notation χρ(λ) refers to the symmetric group character indexed by ρ evaluated on a
permutation of cycle type λ. The final product in each line is over the boxes of the Young
diagram of the partition ρ. The notation c(�) refers to the content of the box, which is
defined to be j− i for a box in the ith row from the top and the jth column from the left.

In both equations (1) and (2), the first equality is the definition of the monotone
Hurwitz number generating series. The second equality arises from expanding the product
of conjugacy classes with the symmetric polynomials of the Jucys–Murphy elements in
ZQ[Sd] and collecting the coefficient of the identity. The third equality is obtained by
converting the conjugacy classes into the basis of orthogonal idempotents in ZQ[Sd] and
invoking the Jucys correspondence [8].

Proof of Theorem 6 from Theorem 5. Recall that Theorem 5 and Theorem 6 respectively
state that

Map(λ) =
∑
µ`d

z(λ)H<(λ;µ) FSMap(µ)

and
FSMap(µ) =

∑
λ`d

z(µ) H6(µ;λ)
∣∣
~→−~ Map(λ).

These equations provide the transition matrices that convert from ordinary to fully simple
map enumerations and vice versa. The equivalence of these two statements is a conse-
quence of the fact that these transition matrices are inverses of each other. To prove this,
it is sufficient to check that∑

ρ`d

(
z(λ)H<(λ; ρ)

)
·
(
z(ρ)H6(ρ;µ)

∣∣
~→−~

)
= δλ,µ.

The check is a straightforward consequence of applying equations (1) and (2) and the
orthogonality of characters.

2.3 Dessins d’enfant

A dessin d’enfant is often described in the literature as a map whose vertices are bicoloured
in such a way that each edge is adjacent to one vertex of each colour [9]. However, we
will adopt the dual picture, which aligns with Theorem 1 and is geometrically well-suited
to our purposes.

Definition 8. A dessin d’enfant is a map in which each edge is adjacent to one boundary
face and one internal face. In this context, we refer to the boundary faces as blue faces and
the internal faces as red faces. Two dessins d’enfant are equivalent if the corresponding
maps are equivalent.
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1 2

Figure 4: An example of a dessin d’enfant on the sphere with two blue faces and one red
face.

One can encode a dessin d’enfant via a triple (τr, τb, τv) of permutations acting on the
set E of (unoriented) edges, in which

• τr rotates each edge anticlockwise around the adjacent red face;

• τb rotates each edge anticlockwise around the adjacent blue face; and

• τv rotates each edge anticlockwise by two edges around the vertex to which it points.

For this last point, we assign an orientation to the edges of a dessin d’enfant in which
each edge is oriented to have a blue face on its left and a red face on its right.

It follows that τrτbτv = id, where we adopt the convention of multiplying permutations
from right to left. Thus, one obtains the following result.

Lemma 9. A dessin d’enfant can be encoded by a triple (τr, τb, τv) of permutations in
S(E) and a tuple R ∈ En such that

• τrτbτv = id; and

• each cycle of τb contains exactly one element of R.

The data (τr, τb, τv;R) and (τ̃r, τ̃b, τ̃v; R̃) define equivalent dessins d’enfant if and only if

there exists a bijection φ : E → Ẽ that sends R to R̃ and satisfies τ̃i = φτiφ
−1 for

i ∈ {r, b, v}.

Definition 10. Let λ = (λ1, λ2, . . . , λ`) and µ = (µ1, µ2, . . . , µn) be partitions of a non-
negative integer d and let k be an integer. Define Dk(λ;µ) to be the number of (possibly
disconnected) dessins d’enfant such that

• the blue face i has degree λi for i = 1, 2, . . . , `;

• the red faces have degrees µ1, µ2, . . . , µn in some arbitrary order; and

• the number of edges is k more than the number of vertices.

Up to a simple combinatorial factor, the strictly monotone Hurwitz number H<
k (λ;µ)

and the dessin d’enfant enumeration Dk(λ;µ) agree. The crux of the argument is the
following elementary result, which connects the two proofs of Theorem 5 presented in the
following sections.
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Lemma 11. Each permutation in Sd can be uniquely expressed as the product of a strictly
monotone sequence of transpositions. Moreover, if the permutation has cycle type ν, then
the number of transpositions is d− `(ν).

Proof. A cycle (a1 a2 · · · am) in which am = max(a1, a2, . . . , am) may be expressed as
the product (a1 a2 · · · am−1) ◦ (am−1 am). Iterating the process on the smaller cycle
(a1 a2 · · · am−1) results in an expression for (a1 a2 · · · am) as a product of a strictly
monotone sequence of m− 1 transpositions.

For an arbitrary permutation ρ ∈ Sd of cycle type ν, one may perform the above
procedure to each cycle to obtain an expression

ρ = (a1 b1) ◦ (a2 b2) ◦ · · · ◦ (ak bk),

where ai < bi and b1, b2, . . . , bk are pairwise distinct. Now commute the transpositions
to ensure that the resulting sequence is strictly monotone. If we have two consecutive
transpositions (a b)◦(c d) with a, b, c, d pairwise distinct, then they commute and we have
(a b) ◦ (c d) = (c d) ◦ (a b). The only other case that arises is if we have two consecutive
transpositions (a c)◦(a b) with a < b < c, in which case we have (a c)◦(a b) = (a b)◦(b c).
Repeatedly applying these operations results in an expression for ρ as the product of a
strictly monotone sequence of d− `(ν) transpositions.

To see why this expression is unique, we simply show that the number of strictly
monotone sequences of transpositions in Sd is equal to the number of permutations in
Sd. One way to see this is to consider sequences

(a2 2), (a3 3), (a4 4), . . . , (ad d),

where 1 6 ak 6 k. It is clear that the number of such sequences is d! and one obtains
all possible strictly monotone sequences of transpositions by redacting any occurrences of
(i i) for some integer i.

Consider a dessin d’enfant (τr, τb, τv;R) in which the cycle types of τb and τr are λ and
µ, respectively. The previous proposition allows us to write τv = τ1τ2 · · · τk for a unique
strictly monotone sequence of transpositions τ1, τ2, . . . , τk. It follows that

τbτ1τ2 · · · τkτr = id,

so we obtain a tuple (τb, τ1, τ2, . . . , τk, τr) that contributes to the strictly monotone Hurwitz
number H<

k (λ;µ). Recall that the enumeration of dessins d’enfant required in addition a
choice of the tuple of roots. The number of such choices is simply

z(λ) =

`(λ)∏
i=1

λi ·
∏
j>1

mj(λ)!.

The first product accounts for the number of ways to choose a root within each cycle,
while the second product accounts for the number of ways to order these so that root rj
comes from a cycle of length λj. Thus, we obtain the following relation.
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Proposition 12. The strictly monotone Hurwitz numbers and the dessin d’enfant enu-
meration are related by

Dk(λ;µ) = z(λ)H<
k (λ;µ).

In analogy with the monotone Hurwitz numbers, we collect the Dk(λ;µ) for varying
k together in the generating series

D(λ;µ) =
∑
k>0

Dk(λ;µ) ~k.

The previous proposition can then be expressed as

D(λ;µ) = z(λ)H<(λ;µ).

3 Proof 1: Monotone transpositions

In this section, we present an algorithm that turns an ordinary map into a fully simple
map. The algorithm systematically traverses the set of boundary edges and performs a
“simplification” there, if possible.

3.1 Simplification algorithm

Throughout the section, we use the following terminology.

Definition 13. A vertex in a map is called fully simple if at most one boundary edge is
incident to it. A boundary face in a map is called fully simple if every vertex incident
to it is fully simple. Thus, a map is fully simple if and only if all of its vertices are fully
simple or equivalently, if and only if all of its boundary faces are fully simple.

Now let us start with an ordinary map M with ` boundary faces of respective degrees
λ1, λ2, . . . , λ`. We assign to the oriented edges adjacent to boundary face i the labels

(i, 1), (i, 2), (i, 3), . . . , (i, λi),

where (i, 1) denotes the root and the remaining labels are assigned in an anticlockwise
manner around the boundary face. With this convention, one can write σ2(i, j) = (i, j+1),
where the second entry is considered modulo λi. These labels allow us to equip the set B
of boundary edges with the lexicographical order. From M , we construct a fully simple
map M s via the following algorithm.

We start at the root (1, 1) of boundary face 1 in M . Our algorithm traverses the
set B of boundary edges in lexicographical order. At each step of the algorithm, the
permutations σ0 and σ2 may change, while σ1 remains unchanged throughout. Suppose
that we are at the boundary edge (p, q) and that it is incident to vertex v. Then the
following two possibilities arise.

• If the vertex v is fully simple, then we leave the permutations σ0 and σ2 unchanged.
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• Otherwise, there are at least two boundary edges incident to v, including (p, q). Let
us write (p′, q′) = σ∂0 (p, q) and observe that since v is not fully simple, we must have
(p′, q′) 6= (p, q) — see Figure 5. We change the permutation σ0 into σ̃0 by composing
it with a transposition thus.

σ̃0 = ((p, q); (p′, q′)) ◦ σ0 (3)

To preserve the relation σ0σ1σ2 = id, we change the permutation σ2 into σ̃2 in the
following way.

σ̃2 = σ2 ◦ ((p, q); (p′, q′))

This step of the algorithm splits the vertex v into two vertices v1 and v2, as shown
in Figure 5. The oriented edge (p, q) is now incident to v1, which is necessarily fully
simple. The oriented edge (p′, q′) is now incident to v2, which might not be fully
simple. At the end of each step of the algorithm, we update σ0 to be σ̃0 and σ2 to
be σ̃2.

no other
boundary

v

(p, q)

(p′, q′)

σ2(p, q)

σ2(p′, q′)

(p′, q′)

v2

σ2(p′, q′)

(p, q)

no other
boundary

v1

σ2(p, q)

Figure 5: The diagrams depict the local structure before and after the simplification algo-
rithm is applied to the boundary edge (p, q), which is incident to a vertex v that is not fully
simple. The arrows represent oriented edges while the blue domains represent boundary
faces. We turn anticlockwise around v and seek the first boundary edge (p′, q′) = σ∂0 (p, q).
The permutation σ0 is then updated to σ̃0 = ((p, q); (p′, q′)) ◦ σ0 and the permutation σ2

to σ̃2 = σ2 ◦ ((p, q); (p′, q′)). This operation has the effect of splitting the vertex v into
two vertices v1 and v2.

Although we distinguished two cases here, one may consider the first to be a special
case of the second; for if v is already fully simple, then one has σ∂0 (p, q) = (p, q). So the
“transposition” arising in equation (3) would be ((p, q); (p, q)), which one may interpret
as the identity permutation. So composing with the identity permutation is consistent
with leaving the permutations σ0 and σ2 unchanged in the first case.
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At the end of each step, we move to the next boundary edge according to the lexico-
graphical order defined above. Once all of the oriented edges adjacent to a boundary face
have been traversed, that boundary face is then fully simple. Once all of the boundary
edges in B have been traversed, then the resulting map is fully simple, although it remains
to assign the roots. We do this by declaring the boundary faces to be such that B remains
the set of boundary edges. We declare the tuple of roots to be lexicographically minimal,
such that there is one root adjacent to each such boundary face. Thus, we conclude the
algorithm with a fully simple map, which we denote by M s.

3.2 Monotonicity

Let τ1, τ2, . . . , τk be the transpositions appearing in equation (3) during the simplification
algorithm, in the order that they arise. The permutations representing the ordinary map
M are σ0, σ1, σ2, and we denote the permutations representing the fully simple map M s

by σs0, σ
s
1, σ

s
2. The latter are obtained from the former via

σs0 = τk · · · τ2τ1σ0, σs1 = σ1, σs2 = σ2τ1τ2 · · · τk. (4)

The algorithm implies a certain monotonicity condition on the sequence of transpo-
sitions τ1, τ2, . . . , τk. We write τi = ((pi, qi); (p′i, q

′
i)) for i = 1, 2, . . . , k, where (p′i, q

′
i) =

σ∂0 (pi, qi) and we adopt the labels of boundary edges described in Section 3.1. By con-
struction, we know that (pi, qi) is smaller than (p′i, q

′
i) with respect to the lexicographical

order. Otherwise, the boundary edge (p′i, q
′
i) would have been visited in a previous step

of the algorithm and the vertex it is incident to would have already been made fully
simple. Furthermore, we know that the sequence (p1, q1), (p2, q2), . . . , (pk, qk) is strictly
increasing with respect to the lexicographical order. This is because the algorithm visits
the boundary edges in that order. Thus, we have deduced the following.

Lemma 14. For any ordinary map M , the sequence τ1, τ2, . . . , τk of transpositions arising
from the simplification algorithm satisfies the following monotonicity property with respect
to the lexicographical order: the smaller elements transposed by τ1, τ2, . . . , τk form a strictly
increasing sequence.

Note that in Theorem 4, the definition of monotone Hurwitz numbers requires a se-
quence of transpositions in which the larger elements form a strictly increasing sequence.
However, we claim that the enumeration of such sequences is not sensitive to whether
one takes the smaller or larger elements. Indeed, one can obtain one from the other
by reversing the sequence of transpositions and reversing the ordering imposed on the
elements.

3.3 Conclusion

The previous discussions on the simplification algorithm and monotonicity now allow us
to deduce our main result.
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Proof of Theorem 5. To any ordinary map M described by the permutations σ0, σ1, σ2,
the simplification algorithm above associates a fully simple map M s described by the per-
mutations σs0, σ

s
1, σ

s
2, as well as a strictly increasing sequence of transpositions τ1, τ2, . . . , τk.

All of these permutations are related by equation (4).
Observe that the simplification algorithm changes neither the number of internal faces

nor their degrees. It also leaves the number of edges invariant but creates k new vertices,
as shown in Figure 5. Since we calculate Euler characteristics after removing the interiors
of boundary faces, we find that

χ(M s) = χ(M) + k.

It follows that the weight attached to M is ~k multiplied by the weight attached to M s.
By inverting equation (4), one deduces that the correspondence between maps and

fully simple maps with a strictly increasing sequence of transpositions is bijective and
weight-preserving. Therefore, we have

Map(λ) =
∑
µ`|λ|

(∑
k>0

H̃<
k (λ;µ) ~k

)
FSMap(µ), (5)

where H̃<
k (λ;µ) is the number of strictly increasing sequences τ1, τ2, . . . , τk of transposi-

tions such that
σs2 = σ2 ◦ τ1 ◦ τ2 ◦ · · · ◦ τk ∈ Cµ.

To compute H̃<
k (λ;µ), we emphasise that the permutation σ2 is a fixed element of Cλ,

while σs2 is allowed to be an arbitrary element of Cµ. From the discussion in Section 2.2,
we know that starting from another fixed permutation σ̃2 ∈ Cλ will produce the same
number. After comparing with Theorem 4, we deduce that

H̃<
k (λ;µ) =

d!

|Cλ|
H<
k (λ;µ) = z(λ)H<

k (λ;µ),

and combining with equation (5) yields the desired result.

4 Proof 2: Dessins d’enfant

In this section we construct a bijection between ordinary maps and pairs comprising a
fully simple map and a dessin d’enfant.

4.1 Intuition

In Section 2.3, we observed that strictly monotone Hurwitz numbers are naturally related
to dessins d’enfant. In particular, one may invoke Theorem 12 to equivalently state
Theorem 5 as

Map(λ) =
∑
µ`d

D(λ;µ) FSMap(µ).
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This particular form of the theorem suggests a natural combinatorial proof by constructing
a function

map 7−→ (fully simple map, dessin d’enfant)

that takes an ordinary map and returns a pair comprising a fully simple map and a dessin
d’enfant. Moreover, we would like the blue face degrees of the dessin d’enfant to match
the boundary face degrees of the ordinary map and the red face degrees of the dessin
d’enfant to match the boundary face degrees of the fully simple map.

Below, this function is described by interpreting both maps and dessins d’enfant in
terms of triples of permutations, as discussed in Section 2. However, such an algebraic
proof is strongly motivated by a geometric intuition that is illustrated by the following
example.

Example 15. The ordinary map on the left of Figure 6 is not fully simple, since the
central vertex is shared by boundary face 1 and boundary face 2.

1 2

ordinary map

1

fully simple map

1 2

dessin d’enfant

Figure 6: This example shows the geometric intuition that leads to the construction
described below.

By “splitting” the central vertex, one obtains the map on the right, which is indeed
fully simple. In a certain sense, the dessin d’enfant below it stores the information required
to recover the original map from the fully simple map, by gluing the blue faces of the
dessin d’enfant into the fully simple map. So informally speaking, the fully simple map
encodes the internal faces of the map while the dessin d’enfant encodes how the boundaries
of the map intersect.

4.2 Construction

Forward

We now describe our construction, which takes an ordinary map M and returns a pair
(F (M), D(M)), where F (M) is a fully simple map and D(M) is a dessin d’enfant. A
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consequence of the construction will be that the blue face degrees of D(M) match the
boundary face degrees of M and the red face degrees of D(M) match the boundary face
degrees of F (M).

Input. The ordinary map M given by the data (σ0, σ1, σ2;R).
As in Section 2.1, let E denote the set of oriented edges of M , so that σ0, σ1, σ2 ∈ S(E).

Let B ⊆ E be the union of the σ2-orbits of the elements of R. Consider the function
∂ : S(E)→ S(B) that expresses a permutation on the set E as a union of disjoint cycles
and then deletes those elements that do not lie in B. Furthermore, let ι : S(B)→ S(E)
be the natural inclusion. With this notation, the permutation σ∂0 introduced at the end
of Section 2.1 can be considered as an element of S(E), namely ι ◦ ∂(σ0).

Output. The map F (M) given by the tuple ((σ∂0 )−1σ0, σ1, σ2σ
∂
0 ;R) and the dessin

d’enfant D(M) given by the tuple (∂(σ2σ
∂
0 )−1, ∂(σ2), ∂(σ0);R).

Notice that each (oriented) boundary edge in M appears as an unoriented edge in
D(M), so that B corresponds to the set of unoriented edges of D(M).

To define R, we first observe that there exists a set of faces of the unrooted map F (M)
whose adjacent edges precisely recover the set B. We designate these the boundary faces
of F (M) and suppose that their degrees are given by µ1, µ2, . . . , µn, in some order.

Next, consider the total order on the set B of boundary edges, described in Section 3.1.
In other words, assign to a boundary edge the label (i, j) if it is adjacent to face i and it
is equal to σj−1

2 (ri), where we choose j to be the smallest such positive integer. The total
order is then simply the lexicographical order on B with respect to these labels. Now
choose the tuple of roots R = (r1, r2, . . . , rn) such that ri is adjacent to a face of degree
µi and such that (r1, r2, . . . , rn) is lexicographically minimal.

Reverse

We now describe the reverse construction, which takes a pair (F,D) comprising a fully
simple map and a dessin d’enfant whose boundary face degrees and red face degrees match
and returns an ordinary map M(F,D) whose boundary face degrees match the blue face
degrees of D.

Input. The fully simple map F given by the data (ρ0, ρ1, ρ2;R) and the dessin d’enfant
D given by the data (τr, τb, τv;R). We assume that the cycle type of ∂(ρ2) equals the cycle
type of τr.

We consider ρ0, ρ1, ρ2 ∈ S(E) and τr, τb, τv ∈ S(B). Suppose that the fully simple map
F has n boundary faces of respective degrees µ1, µ2, . . . , µn. We assign to the oriented
edges adjacent to boundary face i the labels

(i, 1), (i, 2), (i, 3), . . . , (i, µi),

where (i, 1) denotes the root and the remaining labels are assigned in an anticlockwise
manner around the boundary face. In a similar manner, suppose that the dessin d’enfant
D has ` blue faces of respective degrees λ1, λ2, . . . , λ`. We assign to the (unoriented) edges
adjacent to blue face i the labels

(i, 1), (i, 2), (i, 3), . . . , (i, λi),
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where (i, 1) denotes the root and the remaining labels are assigned in an anticlockwise
manner around the blue face.

Thus, we have total orders on the set of boundary edges of the fully simple map F
and the set B of edges of the dessin d’enfant D. Consider the unique order-preserving
map between these two sets, which defines an embedding B → E and hence, a natural
inclusion ι : S(B)→ S(E).

Output. The map M(F,D) given by the tuple (ι(τv)ρ0, ρ1, ρ2ι(τv)
−1;R).

Example 16. The ordinary map on the left of Figure 7 is not fully simple, since all of
the vertices of boundary face 2 are not fully simple. Our construction produces a fully
simple map with four connected components, which keeps track of the internal faces of
the ordinary map. The dessin d’enfant instead keeps track of the original boundary faces.
Observe that in this case, it has two connected components, since the two boundary faces
of the ordinary map were disjoint. It is a general fact that the number of connected
components of the dessin d’enfant equals the number of connected components of the
boundary faces in the ordinary map.

fully simple map

dessin d’enfant

1

2 3 4 5

21

2 1

ordinary map

Figure 7: Illustration of the construction for the ordinary map on a torus from Figure 1.

4.3 Proofs

We now check the various claims that were made regarding the construction of the previous
section, before proving Theorem 5.

The map F (M) is a fully simple map.
By construction, F (M) is a map and it remains to check that it is fully simple. Using the
characterisation of fully simple maps from Section 2.1, this is equivalent to the fact that
the elements of B lie in different orbits of (σ∂0 )−1σ0, which is a direct consequence of the
following result.
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Lemma 17. Let B ⊆ E and σ ∈ S(E). Define σ∂ = ι ◦ ∂(σ), where ∂ : S(E) → S(B)
expresses a permutation on the set E as a union of disjoint cycles and then deletes those
elements that do not lie in B, while ι : S(B)→ S(E) is the natural inclusion map. Then
the elements of B lie in different cycles of (σ∂)−1σ.

Proof. Suppose that σ is written in disjoint cycle notation and let us describe how pre-
composing with (σ∂)−1 modifies its cycles. Observe that σ∂(c) = c, if c 6∈ B. Therefore,
if a cycle of σ contains no element from B, then (σ∂)−1σ contains the same cycle.

If σ(c) = b ∈ B, then we choose the smallest positive integer r such that σ−r(b) ∈ B.
By construction of σ∂, we have that (σ∂)−1(b) = σ−r(b). Then σqσ−r(b) 6∈ B for 0 < q < r
and (σ∂)−1 leaves all of these elements invariant. In the cycle of (σ∂)−1σ containing σ−r(b),
the latter is followed by σ−(r−1)(b), . . . , σ−1(b) = c which is then followed by σ−r(b).
Therefore, it contains a unique element of B and we have justified the claim. Note that
if the initial cycle of σ already contains only one b belonging to B, then the minimum r
will be such that σ−r(b) = b and the resulting cycle of (σ∂)−1σ will be the same as the
initial one.

D(M) is a dessin d’enfant.
We simply need to check that ∂(σ2σ

∂
0 )−1 ◦ ∂(σ2) ◦ ∂(σ0) = id, which rearranges to

∂(σ2) ◦ ∂(σ0) = ∂(σ2σ
∂
0 ). This is a direct consequence of the following lemma, under

the identification a = σ2 and b = ∂(σ0). We omit the proof, since it is a straightforward
computation.

Lemma 18. Let B ⊆ E, a ∈ S(E) and b ∈ S(B). If we define the maps ∂ and ι as in
the previous lemma, then

∂(a) ◦ b = ∂(a ◦ ι(b)).

The boundary face degrees of M match the blue face degrees of D(M).
This is true since both the boundary face degrees of M and the blue face degrees of D(M)
are given by the cycle type of ∂(σ2).

The boundary face degrees of F (M) match the red face degrees of D(M).
This is true since the boundary face degrees of F (M) are given by the cycle type of
∂(σ2σ

∂
0 ), while the red face degrees of D(M) are given by the cycle type of ∂(σ2σ

∂
0 )−1.

The cycle types agree since the permutations are inverses of each other.

Proof of Theorem 5. To an ordinary map M , the forward construction of Section 4.2
associates a fully simple map F (M) as well as a dessin d’enfant D(M). We have shown
that the boundary face degrees of M match the blue face degrees of D(M) and that the
boundary face degrees of F (M) match the red face degrees of D(M). Conversely, to a
fully simple map F and a dessin d’enfant D satisfying these degree conditions, the reverse
construction of Section 4.2 associates an ordinary map M(F,D). These two constructions
are precisely the inverses of each other, which can be shown by a straightforward check.
Indeed, the triple of permutations describing the map M(F,D) is obtained by inverting
the relation between M and the pair (F (M), D(M)).
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The result then follows from the fact that the bijective map of the previous paragraph
is weight-preserving. To see this, we first note that the construction preserves the internal
faces and their degrees, when constructing F (M) from M . So the powers of t1, t2, t3, . . .
agree. It then remains to check that the exponent of ~ is preserved as well. The exponent
of ~ associated to the map M = (σ0, σ1, σ2;R) is

−χ(M) = −c(σ0) + c(σ1)− c(σ2) + `(µ),

where c(σ) denotes the number of disjoint cycles in the permutation σ. The exponent of
~ associated to the fully simple map F (M) is

−χ(F (M)) = −c((σ∂0 )−1σ0) + c(σ1)− c(σ2σ
∂
0 ) + `(λ).

It follows from Theorem 11 that the exponent of ~ associated to the dessin d’enfant D(M)
is

|B| − c(τv) = |B| − c(∂(σ0)).

So we simply need to check that the first contribution is equal to the sum of the latter
two. This can be expressed by the equation

|B| − c(∂(σ0)) = c((σ∂0 )−1σ0)− c(σ0),

where we have used the fact that the internal faces of M and F (M) agree, which implies
that c(σ2) − `(µ) = c(σ2σ

∂
0 ) − `(λ). However, this equation is a consequence of the two

relations

|B| = c(∂((σ∂0 )−1σ0)) and c((σ∂0 )−1σ0)− c(∂((σ∂0 )−1σ0)) = c(σ0)− c(∂(σ0)).

The first relation is equivalent to the obvious fact that in the fully simple map F (M), the
number of vertices incident to a boundary face is equal to the number of boundary edges.
The second relation is equivalent to the obvious fact that the number of vertices in F (M)
that are not incident to a boundary face is equal to the number of vertices in M that are
not incident to a boundary face.

5 Generalisations

In this section, we generalise our result for two fundamental objects — namely, stuffed
maps and hypermaps. They can be roughly thought of as being akin to maps, with the
same notion of boundaries but endowed with a richer internal structure. The idea for both
generalisations is that the previous manipulations did not affect the internal structure of
maps; thus, all the arguments still apply in these settings. We would like to point out
that the same idea can be applied to more general objects, as long as they have the same
type of boundaries as maps and the weight factorises as a product of contributions from
boundary faces and internal faces.
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5.1 Stuffed maps

In the definition of a map (Theorem 1), if one relaxes the condition that the complement
of the graph is a disjoint union of topological disks, one obtains the notion of a stuffed
map [1]. However, we also impose the following important caveat — namely, that the
boundary faces must be homeomorphic to topological disks. On the other hand, the
internal faces of a stuffed map may have arbitrary topology, including any non-negative
genus and any positive number of boundary components. Each such boundary component
then has an associated positive integer degree. The definition of fully simple (Theorem 2)
then carries over verbatim to the context of stuffed maps. The enumeration of stuffed
maps that we are concerned with requires extra parameters to keep track of the possible
topologies of the internal faces.

Definition 19. For positive integers µ1, µ2, . . . , µn, let

Mapst(µ1, µ2, . . . , µn) =
∑

M stuffed map
|π0(∂M)|=n

deg(∂iM)=µi

wst(M)

denote the weighted enumeration of stuffed maps M such that the degree of boundary
face i is µi for i = 1, 2, . . . , n. The weight of a stuffed map is given by

wst(M) =
~−χ(M)

|AutM |
∏
g>0

∏
λ

t
fg,λ(M)

g,λ ,

where χ(M) is the Euler characteristic of the underlying surface with the interiors of the
boundary faces removed and fg,λ(M) the number of internal faces with genus g and `(λ)
boundary components with degrees prescribed by the non-empty partition λ. The analo-
gous weighted enumeration restricted to the set of fully simple stuffed maps is denoted

FSMapst(µ1, µ2, . . . , µn) =
∑

M fully simple stuffed map
|π0(∂M)|=n

deg(∂iM)=µi

wst(M).

As in the usual case, we have that Mapst(µ1, µ2, . . . , µn) and FSMapst(µ1, µ2, . . . , µn)
are well-defined elements of Z[[~, ~−1; tg,λ | g > 0 and λ a partition]].

Our main result extends to the enumerations of stuffed maps and fully simple stuffed
maps, essentially without change.

Theorem 20. For any partition λ = (λ1, λ2, . . . , λ`) of a positive integer d,

Mapst(λ) = z(λ)
∑
µ`d

H<(λ;µ) FSMapst(µ).

In order to extend our proofs to stuffed maps, one can consider a mild generalisation
of the permutation model for maps presented in Section 2.1. The basic idea is that a
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stuffed map can be encoded by a map, along with a partition of its internal faces and the
assignment of a non-negative integer to each part in the partition. To recover the stuffed
map from the map, for each part in the partition, we remove the corresponding internal
faces and glue in a surface whose genus is specified by the associated integer.

Lemma 21. A stuffed map can be encoded by a map (σ0, σ1, σ2;R) as per Theorem 1,
along with an unordered partition P of the unrooted cycles of σ2 and a function h : P →
{0, 1, 2, . . .} that assigns a non-negative integer to each part of the partition.

The data (σ0, σ1, σ2;R;P , h) and (σ̃0, σ̃1, σ̃2; R̃; P̃ , h̃) define equivalent stuffed maps if

and only if there exists an equivalence of maps φ : E → Ẽ such that φ carries P into P̃
and h = h̃ ◦ φ.

Note that, unlike for maps, the cycles of σ2 do not necessarily correspond to faces.
The faces of the stuffed map are rather the parts of P . The Euler characteristic of a
stuffed map is computed using this new notion of face.

As for maps, the boundary faces in stuffed maps must be homeomorphic to disks.
Since all the manipulations in our proofs leave the internal faces unchanged and only
affect boundary faces, the arguments of both Sections 3 and 4 remain valid for stuffed
maps and yield Theorem 20.

5.2 Hypermaps

Hypermaps generalise maps analogously to the way that hypergraphs generalise graphs.
Whereas graphs and maps have edges that connect two vertices, hypergraphs and hyper-
maps have so-called hyperedges that connect any number of vertices. We will consider
our hypermaps to have faces coloured blue and hyperedges coloured red. This leads to
the following definition, adapted from [9].

Definition 22. A hypermap is a bicoloured map, in the sense that each face is coloured
either blue or red so that each edge is adjacent to a blue face and a red face. We
furthermore require that each root is adjacent to a blue face. In this context, we consider
the blue faces with roots as boundary faces, the blue faces without roots as internal faces,
and the red faces as hyperedges.

A dessin d’enfant is a particular case of a hypermap, in which there are no internal
faces. As with the dessins d’enfant appearing in Section 2.3, we assign an orientation to
the edges of a hypermap in which each edge is oriented to have a blue face on its left
and a red face on its right. The definition of fully simple (Theorem 2) again carries over
verbatim to the context of hypermaps.

One can encode an unrooted hypermap via a triple (σ0, σ1, σ2) of permutations acting
on the set E of (unoriented) edges, in which

• σ0 rotates each edge anticlockwise by two edges around the vertex to which it points;

• σ1 rotates each edge anticlockwise around the adjacent red face; and
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• σ2 rotates each edge anticlockwise around the adjacent blue face.

It follows that σ0σ1σ2 = id.

Lemma 23. A hypermap can be encoded by a triple (σ0, σ1, σ2) of permutations in S(E)
and a tuple R ∈ En such that

• σ0σ1σ2 = id; and

• no two elements of R lie in the same cycle of σ2.

The data (σ0, σ1, σ2;R) and (σ̃0, σ̃1, σ̃2; R̃) define equivalent hypermaps if and only if there

exists a bijection φ : E → Ẽ that sends R to R̃ and satisfies σ̃i = φσiφ
−1 for i ∈ {0, 1, 2}.

A dessin d’enfant given by the triple (τr, τb, τv) can be thought of as a hypermap given
by the triple (σ0, σ1, σ2) under the correspondence τr = σ1, τb = σ2, τv = σ0. Notice that
the equation τrτbτv = id is then equivalent to σ0σ1σ2 = id. Also observe that if σ1 (or τr)
is a fixed point free involution, then the hyperedges (or red faces) have degree 2 and can
be collapsed to become edges in the usual sense. In this case, the hypermap is a map.

Definition 24. For positive integers µ1, µ2, . . . , µn, let

Maph(µ1, µ2, . . . , µn) =
∑

M hypermap
|π0(∂M)|=n

deg(∂iM)=µi

wh(M)

denote the weighted enumeration of hypermaps M such that the degree of boundary face
i is µi for i = 1, 2, . . . , n. The weight of a hypermap is given by

wh(M) =
~−χ(M)

|AutM |
t
f1(M)
1 t

f2(M)
2 t

f3(M)
3 · · ·ue1(M)

1 u
e2(M)
2 u

e3(M)
3 · · · ,

where fi(M) is the number of internal faces of degree i and ei(M) is the number of
hyperedges of degree i. The analogous weighted enumeration restricted to the set of fully
simple hypermaps is denoted

FSMaph(µ1, µ2, . . . , µn) =
∑

M fully simple hypermap
|π0(∂M)|=n

deg(∂iM)=µi

wh(M).

As in the usual case, we have that Maph(µ1, µ2, . . . , µn) and FSMaph(µ1, µ2, . . . , µn)
are well-defined elements of Z[[~, ~−1; t1, t2, t3, . . . ;u1, u2, u3, . . .]].

Our main result extends to the enumerations of hypermaps and fully simple hyper-
maps, essentially without change.

Theorem 25. For any partition λ = (λ1, λ2, . . . , λ`) of a positive integer d,

Maph(λ) = z(λ)
∑
µ`d

H<(λ;µ) FSMaph(µ).

Again, this result follows from our arguments in Sections 3 and 4, since the boundary
faces in hypermaps must be homeomorphic to disks and all the manipulations in our
proofs leave the internal faces unchanged and only affect boundary faces.
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[4] B. Collins, J. A. Mingo, P. Śniady, and R. Speicher, Second order freeness and fluctu-
ations of random matrices. III. Higher order freeness and free cumulants, Doc. Math.
12 (2007), 1–70, math.OA/0606431.

[5] B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion,
Commun. Number Theory Phys. 1 (2007), no. 2, 347–452, math-ph/0702045.

[6] , Topological expansion of mixed correlations in the Hermitian 2-matrix model
and x-y symmetry of the Fg algebraic invariants, J. Phys. A 41 (2008), no. 1, 015203,
28, math-ph/0705.0958.

[7] , About the x-y symmetry of the Fg algebraic invariants, (2013), math-
ph/1311.4993.

[8] A.-A. A. Jucys, Symmetric polynomials and the center of the symmetric group ring,
Rep. Mathematical Phys. 5 (1974), no. 1, 107–112.

[9] S. K. Lando and A. K. Zvonkin, Graphs on surfaces and their applications, 141
(2004), xvi+455, With an appendix by Don B. Zagier, Low-Dimensional Topology,
II.

[10] G. E. Murphy, A new construction of Young’s seminormal representation of the
symmetric groups, J. Algebra 69 (1981), no. 2, 287–297.

the electronic journal of combinatorics 26(3) (2019), #P3.43 24

http://arxiv.org/abs/1307.4957
https://arxiv.org/abs/1710.07851
https://arxiv.org/abs/math-ph/0205010
https://arxiv.org/abs/math/0606431
https://arxiv.org/abs/math-ph/0702045
http://arxiv.org/abs/0705.0958
https://arxiv.org/abs/1311.4993
https://arxiv.org/abs/1311.4993

	Introduction
	Preliminaries
	Maps
	Monotone Hurwitz numbers
	Dessins d'enfant

	Proof 1: Monotone transpositions
	Simplification algorithm
	Monotonicity
	Conclusion

	Proof 2: Dessins d'enfant
	Intuition
	Construction
	Proofs

	Generalisations
	Stuffed maps
	Hypermaps


